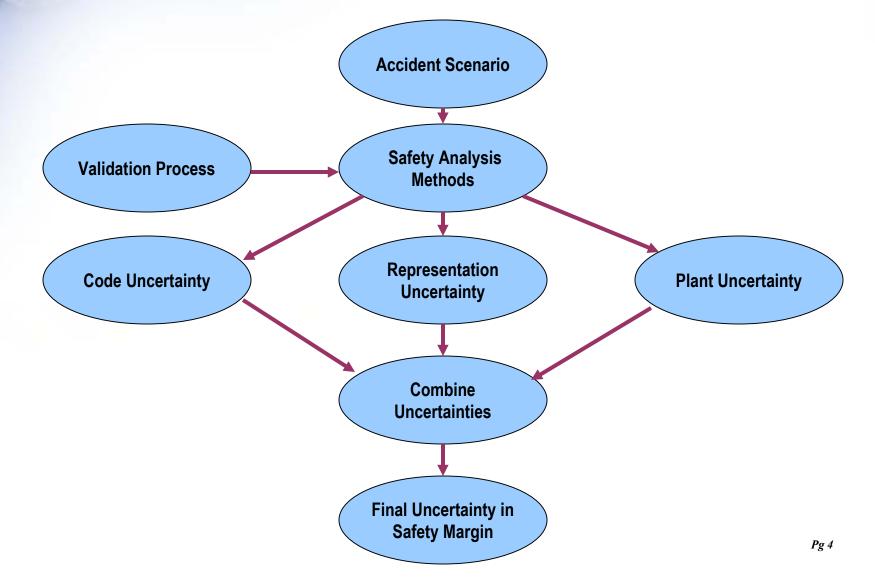
Qualification Process for Safety Analysis Computer Codes

by Andrew White, Director, Reactor Safety

Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation September 26, 2002

Outline

- Qualification program for safety and licensing codes for current CANDU reactors
 - Description of Canadian industry initiative to formally qualify codes
 - Overview of qualification process
 - Renewal of design basis
 - Computer code validation
- Validation underway for ACR



Background

- Computer codes are important tools for design support and safety analysis of CANDU reactors
- Codes were verified and validated against experiment as they were developed and used, but the methods were not formal
- Since 1995, the Canadian industry has carried out a formal program for qualifying design and analysis software
 - Quantify biases and uncertainties
 - Consistent with modern quality standards, CSA-N286.7-99

A

Uncertainty Assessment Process

Qualification

- A qualified computer program is one that is:
 - Properly specified: documented requirements, accuracy targets and quality attributes
 - Shown to meet all requirements (verification)
 - Demonstrated to meet intended application (validation)
 - Is under configuration management and version control

Industry Standard Toolset (IST)

- Formal qualification of safety and licensing codes was recognized as requiring significant investment, and resulting in redundancies and inconsistencies if undertaken separately
- Canadian utilities and AECL worked together to qualify a standard set of computer programs (IST)
 - Consolidated on single versions of computer programs (with the exception of thermalhydraulics)
 - Agreed to common processes to meet CSA-N286.7-99
 - Shared effort on code development, qualification and support

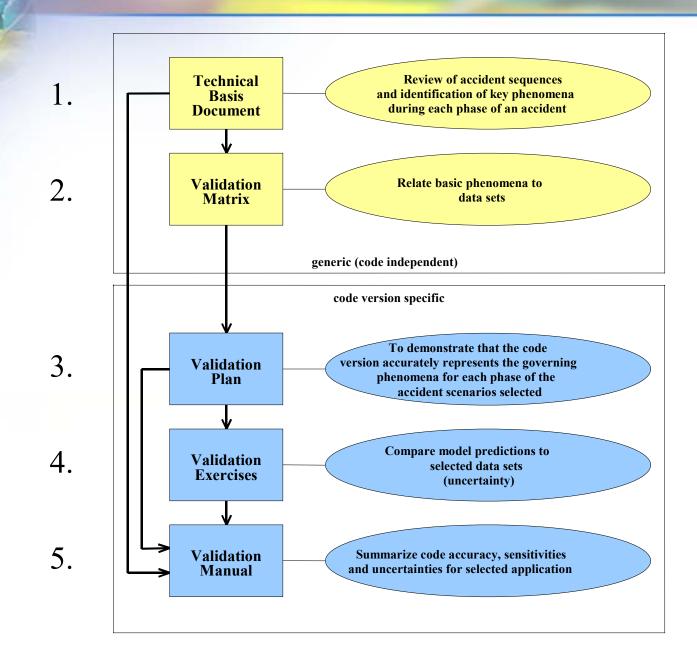
Qualification Process

- Renewal of design basis: demonstration that "legacy" safety analysis codes comply with software quality assurance (SQA) standards
- Validation: quantification of the range of applicability, and associated accuracy of computer codes

New Code Development

- Development of new codes would follow a process of:
 - Setting requirements (problem definition and requirements specification)
 - Establishing the design: theoretical and conceptual model development (theory manual)
 - Implementing the design: coding (programmers manual)
 - Verification applied at completion of each stage
- A Users Manual provides appropriate instruction on code usage
- The computer program is put under version control and configuration management (AECL Procedure 00-552.1)

Design Basis Renewal


- Review legacy computer programs for compliance with process for new code development
- Ensure appropriate documentation is in place:
 - Theory Manual, Programmers Manual, Users Manual
- Verify:
 - Theory is appropriate for intended application
 - Coding has correctly captured theory
- Ensure program is under version control and configuration management
- Address any remaining gaps

A

Validation Process

- Common approach to validation was developed by Canadian industry, based on use of validation matrices
- Recognizes need to address Code Scaling, Applicability and Uncertainty, consistent with CSAU

Technical Basis Document (TBD)

- For a given accident category, the TBD identifies:
 - The key safety concerns
 - The expected phenomena governing the behavior that evolves with time during identifiable phases of an accident
- The TBD establishes a relationship between technical disciplines, the safety concerns associated with a phase of an accident, the governing physical phenomena, and the relevant validation matrices.
- Example:
 - Early in a LOCA, "Break discharge characteristics and critical flow" is a primary phenomenon
 - During ECC injection, "Quench/rewet characteristics" becomes a primary phenomenon

A

Validation Matrices

- Identify and describe phenomena relevant to a discipline
- Rank the phenomena according to their importance in accident phases (consistent with PIRT)
- Identify data sets and cross-reference to phenomena
 - Separate effects experiments, integral and/or scaled experiments, analytical solutions, inter-code comparisons
 - Includes CANDU-specific and otherwise

Safety Analysis Disciplines

- Reactor Physics: WIMS-AECL, RFSP and DRAGON
- Thermalhydraulics: CATHENA and NUCIRC
- Moderator system behavior: MODTURC_CLAS
- Fuel behavior: ELESTRES and ELOCA
- Fission Product behavior: SOURCE, SOPHAEROS, SMART and ADDAM
- Containment behavior: GOTHIC
- Severe accident phenomenology: MAAP4-CANDU

Thermalhydraulic Phenomena

ID Number	PHENOMENA		
TH1	Break Discharge Characteristics and Critical Flow		
TH2	Coolant Voiding		
TH3	Phase Separation		
TH4	Level Swell and Void Hold-up		
TH5	HT Pump Characteristics (Single & 2-Phase)		
TH6	Thermal Conduction		
TH7	Convective Heat Transfer		
TH8	Nucleate Boiling		
TH9	CHF & Post Dryout Heat Transfer		
TH10	Condensation Heat Transfer		
TH11	Radiative Heat Transfer		
TH12	Quench/rewet Characteristics		
TH13	Zirc/water Thermal-Chemical Reaction		
TH14	Reflux Condensation		
TH15	Counter Current Flow		
TH16	Flow Oscillations		
TH17	Density Driven Flows: Natural Circulation		
TH18	Fuel Channel Deformation		
TH19	Waterhammer		
TH20	Waterhammer: Steam Condensation Induced		
TH21	Noncondensable Gas Effect		

Ranking of Phenomena: Large LOCA in current CANDU

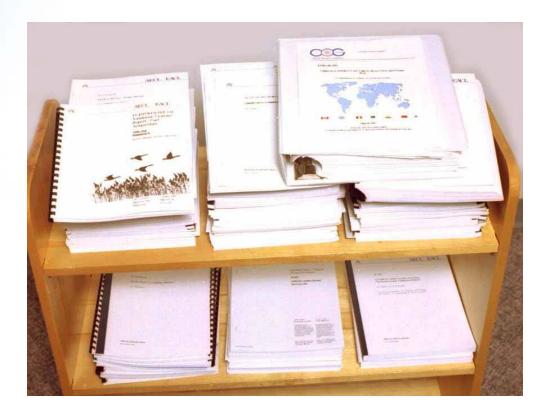
Phase	Reactor Trip	Early Blowdown Cooling	Late Blowdown Cooling/ECIS Injection	Refill
Time Period (seconds)	0 - 5	5 - 30	30 - 200	> 200
		Phenomena		
Primary	Break Discharge Characteristics and Critical Flow	Break Discharge Characteristics and Critical Flow	Break Discharge Characteristics and Critical Flow	Counter-current Flow
	Coolant Voiding	Convective Heat Transfer	Convective Heat Transfer	Phase Separation
	Fuel String Mechanical- Hydraulic Interaction	HT Pump Characteristics (Single & 2-phase)	Condensation Heat Transfer	Thermal Conduction
		Fuel Channel Deformation	Quench Rewet Characteristics	Quench Rewet Characteristics
		Zirc/Water Thermal Chemical Reaction		
		Radiative Heat Transfer		
		Thermal Conduction		
Secondary	CHF & Post Dryout Heat Transfer	CHF & Post Dryout Heat transfer	Phase Separation	Waterhammer steam

Test Data for Thermalhydraulic Phenomena

	TH2	TH6	TH16 Flow
	Coolant	Thermal	Oscillations
	Voiding	Conduction	
SE1: Edwards Pipe Blowdown	•		
SE5: Marviken Bottom Blowdown	0		
SE13: PT/CT contact heat transfer tests		•	
CO1: End Fitting Characterization Tests	0	•	
INT5: RD-12 Natural Circulation Tests			•
INT14: Station Transients			•
NUM6: Radial Conduction Test		•	

• Suitable for direct validation

o Suitable for indirect validation


Validation Plan and Exercises

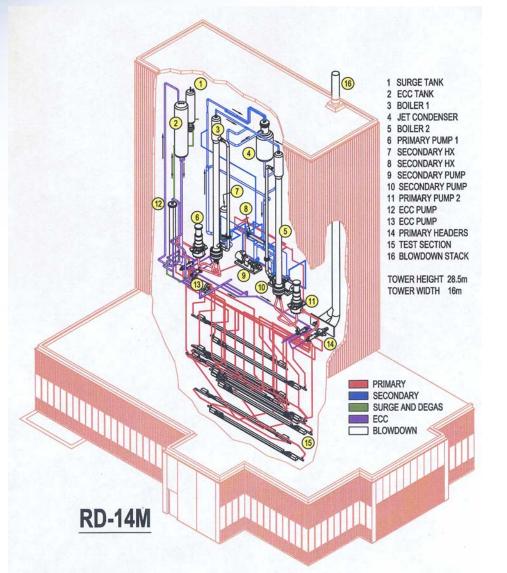
Validation Plan:

- Based on appropriate validation matrix, specifies datasets to be used in validation exercises
 - excludes datasets used for model development
- Consideration given to scaling and feedback effects
- Specifies key parameters, and accuracy requirements Validation Exercises:
- Comparison of code predictions to datasets
- Establishes biases and uncertainties in key parameters over desired ranges of application

Validation Manual

- Summary of results of validation exercises
- Description of range of applicability

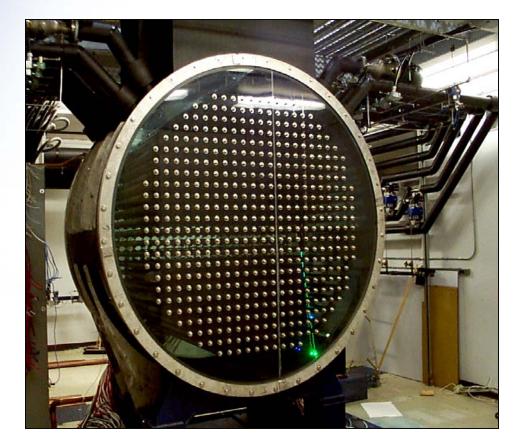
A few of the hundreds of reports that have been generated in support of computer code qualification



Code Qualification Status

- Codes have been qualified for use in safety analysis for current CANDU reactors – a few codes are still in process
- Qualification status will be extended to cover ACR conditions
 - Examples provided on the next slides

RD-14M Experiments for ACR



• RD-14M has been reconfigured for ACR conditions

• Tests are underway to provide validation data for the system thermalhydraulics code CATHENA

MTF Experiments for ACR

• The Moderator Test Facility will be reconfigured for ACR geometry (1/3 scale)

• Tests will be performed to validate the moderator thermalhydraulics code, MODTURC_CLAS

A

Conclusion

- A formal process has been established for qualifying safety and licensing codes for CANDU reactors
- Codes have been qualified for use with current reactors

 remaining gaps to be addressed over next couple of
 years
- An initial assessment by AECL has identified necessary extensions for ACR
- Work is underway to generate the necessary data, and complete code qualification

